TaejoonYang 20190379

# A comparison of Parallel and Sequential Niching Methods 

## Introduction

Niching Methods promote the formation and maintenance of stable subpopulations in GA
Examine four niching methods and compare performance on classification/multimodal function optimization
-Parallel niching methods : Sharing, crowding
-Sequential niching methods
-Parallel hill-climber

## Parallel Niching-Sharing

Sharing derates each population element's
fitness bys amount related to the number of similar individuals in the population

$$
\begin{aligned}
& f^{\prime}(i)=\frac{f(i)}{\sum_{j=1}^{n} \operatorname{sh}(d(i, j))} \\
& \text { sh }(d)= \begin{cases}1-\left(\frac{d}{\sigma_{\text {share }}}\right)^{\alpha}, & \text { if } d<\sigma_{\text {share }} ; \\
0,\end{cases}
\end{aligned}
$$

Shared fitness, niche count, sharing function, threshold: if distance between two population elements is greater than threshold, they do not affect each others shared fitness

## Parallel Niching-Crowding

Deterministic Crowding
Insert new elements into the population by replacing similar elements

Deterministic crowding(DC)
(REPEAT for $g$ generations) DO $n / 2$ times:

1. Select 2 parents, $p_{1}$ and $p_{2}$, randomly, no replacement
2. Cross them, yielding $c_{1}$ and $c_{2}$
3. Apply mutation / other operators, yielding $c_{1}^{\prime}$ and $c_{2}^{\prime}$
4. IF $\left[d\left(p_{1}, c_{1}^{\prime}\right)+d\left(p_{2}, c_{2}^{\prime}\right)\right] \leq\left[d\left(p_{1}, c_{2}^{\prime}\right)+d\left(p_{2}, c_{1}^{\prime}\right)\right]$

- IF $f\left(c_{1}^{\prime}\right)>f\left(p_{1}\right)$ replace $p_{1}$ with $c_{1}^{\prime}$
- IF $f\left(c_{2}^{\prime}\right)>f\left(p_{2}\right)$ replace $p_{2}$ with $c_{2}^{\prime}$

ELSE

- IF $f\left(c_{2}^{\prime}\right)>f\left(p_{1}\right)$ replace $p_{1}$ with $c_{2}^{\prime}$
- IF $f\left(c_{1}^{\prime}\right)>f\left(p_{2}\right)$ replace $p_{2}$ with $c_{1}^{\prime}$


## Parallel hillclimbing

Starts with random generated initial population, forces each element to converge to
its nearest attractor
Similar with binary search

Parallel Hillclimbing (Phenotypic)

1. Initialize Step Size
2. WHILE Step Size $\geq \epsilon$
(a) FOR each population element

- Randomly pick a starting variable
- Change $=$ TRUE
- WHILE Change
- Change $=$ FALSE
- FOR each variable
* IF adding Step Size to current variable yields improved fitness
- Perform the addition
- Change $=$ TRUE
* ELSE IF subtracting Step Size from current variable yields improved fitness
- Perform the subtraction
- Change $=$ TRUE
(b) Step Size $=$ Step Size $/ 2$


## Sequential niching(SN)

Simple GA, Maintaining the best solution of each run offline
Call multiple runs that sequential niching performs to solve a single problem-sequence

Niche radius : to avoid converging to the same area of the search space multiple times

- depress the fitness landscape at all points in radius of solution
- similar with threshold in sharing method


## Parallel vs Sequential

Advantage of SN
-simplicity
-ability to work with smaller population
-speed
Disadvantage of SN
-Loss through deration of optimal
solution/building blocks
-Repeated search of depressed regions
-Repeated convergence to the same solution

## Test problems

M1-M9 : optimization problems
MUX-6, PAR-8 : classification problems

M1~M4: one dimensional, five-peaked
sinusoidal functions
Equally-spaced peaks/not equally spaced peaks
Peaks with uniform height/not uniform height





## Test problems: M5,M6

M5: two dimensional functions with four peaks of identical height
M6: two dimensional functions with 25 peaks of differing heights


Figure 2: Test Function $M 5$ is displayed.


Figure 3: Test Function $M 6$ is displayed.

## Test problems: M7, M8, M9

Massively multimodal, deceptive function
Hardest test problems


Figure 4: Test Function $M 7$ is displayed.

## Test problems: MUX-6,PAR-8

Classification problem

$$
f(P O S, N E G)= \begin{cases}1+P O S & \text { if } N E G=0 ; \\ 1-\frac{N E G}{N T X} & \text { otherwise } .\end{cases}
$$

MUX-6 : six bit multiplexer problem
PAR-8: 8 bit parity problem

Easiest problem : MUX-6
Intermediate difficulty PAR-8

## Result

Easiest problem : M1~M5, MUX-6
Intermediate difficulty : M6, PAR-8
Hardest problem : M7~M9,

Compare the number of GA function(except HC)
Compare total number of function evaluations

## Result-Case 1

Most of the case-HC has best performance (m1,2,5,mux-6)
For some case, DC has best performance (m3,4)
On easy problem, HC
works well

| Method | $\bar{n}$ | $\bar{g}$ | GA: $\mu$ | Combo: $\mu$ |
| :---: | :---: | :---: | :---: | :---: |
| M1 |  |  |  |  |
| HC | 2.72 |  |  | 1017 |
| SN | 3.68 | 46.40 | 738 | 4112 |
| SH | 5.76 | 8.00 | 264 | 2431 |
| DC | 2.40 | 28.00 | 380 | 1246 |
| M2 |  |  |  |  |
| HC | 2.72 |  |  | 1021 |
| SN | 4.64 | 75.60 | 1770 | 8632 |
| SH | 8.96 | 8.70 | 442 | 3827 |
| DC | 2.40 | 27.40 | 372 | 1264 |
| M3 |  |  |  |  |
| HC | 3.04 |  |  | 1150 |
| SN | 5.92 | 26.80 | 719 | 4375 |
| SH | 6.08 | 8.70 | 294 | 2579 |
| DC | 2.08 | 20.30 | 262 | 1013 |
| M4 |  |  |  |  |
| HC | 3.04 |  |  | 1140 |
| SN | 5.12 | 72.40 | 2445 | 10231 |
| SH | 6.72 | 9.20 | 352 | 2892 |
| DC | 2.08 | 17.00 | 210 | 975 |
| M5 |  |  |  |  |
| HC | 2.50 |  |  | 901 |
| SN | 1.30 | 32.30 | 180 | 1456 |
| SH | 2.80 | 8.00 | 103 | 1111 |
| DC | 5.60 | 25.60 | 603 | 2459 |
| MUX-6 |  |  |  |  |
| HC | 10.40 |  |  | 1257 |
| SN | 6.40 | 140.70 | 4423 | 9439 |
| SH | 13.60 | 8.90 | 534 | 1931 |
| DC | 12.00 | 44.30 | 2816 | 3654 |

## Result-Case 1

SN performs poorly in most case
-SN has squashed several
peaks in the fitness
landscape
-once population grows
large enough to locate one peak, it already locate multiple peaks

| Method | $\bar{n}$ | $\bar{g}$ | $G A: \mu$ | Combo: $\mu$ |
| :---: | :---: | :---: | :---: | :---: |
| M1 |  |  |  |  |
| HC | 2.72 |  |  | 1017 |
| SN | 3.68 | 46.40 | 738 | 4112 |
| SH | 5.76 | 8.00 | 264 | 2431 |
| DC | 2.40 | 28.00 | 380 | 1246 |
| M2 |  |  |  |  |
| HC | 2.72 |  |  | 1021 |
| SN | 4.64 | 75.60 | 1770 | 8632 |
| SH | 8.96 | 8.70 | 442 | 3827 |
| DC | 2.40 | 27.40 | 372 | 1264 |
| M3 |  |  |  |  |
| HC | 3.04 |  |  | 1150 |
| SN | 5.92 | 26.80 | 719 | 4375 |
| SH | 6.08 | 8.70 | 294 | 2579 |
| DC | 2.08 | 20.30 | 262 | 1013 |
| M4 |  |  |  |  |
| HC | 3.04 |  |  | 1140 |
| SN | 5.12 | 72.40 | 2445 | 10231 |
| SH | 6.72 | 9.20 | 352 | 2892 |
| DC | 2.08 | 17.00 | 210 | 975 |
| M5 |  |  |  |  |
| HC | 2.50 |  |  | 901 |
| SN | 1.30 | 32.30 | 180 | 1456 |
| SH | 2.80 | 8.00 | 103 | 1111 |
| DC | 5.60 | 25.60 | 603 | 2459 |
| MUX-6 |  |  |  |  |
| HC | 10.40 |  |  | 1257 |
| SN | 6.40 | 140.70 | 4423 | 9439 |
| SH | 13.60 | 8.90 | 534 | 1931 |
| DC | 12.00 | 44.30 | 2816 | 3654 |

## Result-Case 2

Sharing has best performance on both case

DC is hard to find the optimal answer on M6
-DC uses non global optima as stepping-stone, dominated by other local optima

Table 2: Performances are given on the two functions of intermediate difficulty.

| Method | $\bar{n}$ | $g$ | GA: $\mu$ | Combo: $\mu$ |
| :---: | :---: | :---: | :---: | :---: |
| M6 |  |  |  |  |
| HC | 12.29 |  |  | 29,017 |
| SN | 3.58 | 146.30 | 12,202 | 46,657 |
| SH | 5.12 | 11.80 | 1,638 | 12,910 |
| DC |  |  | $>1.5 \times 10^{6}$ |  |
| PAR-8 |  |  |  |  |
| HC | 48.08 |  |  | 202,387 |
| SN | 19.20 | 36.40 | 100,557 | 263,666 |
| SH | 9.60 | 12.60 | 17,203 | 54,402 |
| DC | 11.20 | 87.40 | 125,850 | 149,022 |

## Result-Case 3

DC only found answer on most case

M8(scaling of M7),
sharing has best
performance
-sharing is unable to solve unscaled, massively

Table 3: Performances are given on the three funs tions of greatest difficulty. Function evaluations are i thousands (indicated by the letter $K$ ).

| Method | $\bar{n}$ | $\bar{g}$ | $G A: \mu$ | Combo: $\mu$ |
| :---: | :---: | :---: | :---: | :---: |
| M7 |  |  |  |  |
| HC |  |  |  | > 2000K |
| SN |  |  | $>1500 \mathrm{~K}$ |  |
| SH |  |  | $>1500 \mathrm{~K}$ |  |
| DC | 20.80 | 119.80 | 81K | 101K |
| M8 |  |  |  |  |
| HC |  |  |  | > 2000K |
| SN |  |  | > 1500 K |  |
| SH | 19.20 | 19.20 | 13K | 38K |
| DC | 22.40 | 134.40 | 98K | 119K |
| M9 |  |  |  |  |
| HC |  |  |  | $>2000 \mathrm{~K}$ |
| SN |  |  | $>1500 \mathrm{~K}$ |  |
| SH |  |  |  | > 2000K |
| DC | 136.53 | 337.80 | 1253 K | 1342K | multimodal, deceptive problem

## Discussion

-HC is best form easiest problems, but hard to solve high difficulty problems
-SN is weak on easy problems, and unable to solve harder problems. In most case HC works
better because it does not destroy fitness
landscape
-Sharing works on all levels of complexity, but doesn't work when has extraneous peaks that are similar in fitness to the desired peaks(use scaling)
-DC is generally good for all levels, but it can lose lower optima

