Paper presentation 10 TaejoonYang 20190379

A comparison of Parallel and Sequential Niching Methods

Introduction

Niching Methods promote the formation and maintenance of stable subpopulations in GA Examine four niching methods and compare performance on classification/multimodal function optimization

- -Parallel niching methods : Sharing, crowding
- -Sequential niching methods
- -Parallel hill-climber

Parallel Niching-Sharing

Sharing derates each population element's fitness bys amount related to the number of similar individuals in the population

$$f'(i) = \frac{f(i)}{\sum_{j=1}^{n} sh(d(i,j))}$$
$$sh(d) = \begin{cases} 1 - \left(\frac{d}{\sigma_{share}}\right)^{\alpha}, & \text{if } d < \sigma_{share}; \\ 0, & \text{otherwise}, \end{cases}$$

Shared fitness, niche count, sharing function, threshold: if distance between two population elements is greater than threshold, they do not affect each others shared fitness

Parallel Niching-Crowding

Insert new elements into the population by replacing similar elements Deterministic crowding(DC)

Deterministic Crowding

(REPEAT for g generations) DO n/2 times:

- 1. Select 2 parents, p_1 and p_2 , randomly, no replacement
- 2. Cross them, yielding c_1 and c_2
- 3. Apply mutation / other operators, yielding c'_1 and c'_2
- 4. IF $[d(p_1, c'_1) + d(p_2, c'_2)] \le [d(p_1, c'_2) + d(p_2, c'_1)]$
 - IF $f(c'_1) > f(p_1)$ replace p_1 with c'_1
 - IF $f(c'_2) > f(p_2)$ replace p_2 with c'_2

ELSE

- IF $f(c'_2) > f(p_1)$ replace p_1 with c'_2
- IF $f(c'_1) > f(p_2)$ replace p_2 with c'_1

Parallel hillclimbing

Starts with random generated initial population, forces each element to converge to its nearest attractor Similar with binary search

Parallel Hillclimbing (Phenotypic)

- 1. Initialize Step Size
- 2. WHILE Step Size $\geq \epsilon$
 - (a) FOR each population element
 - Randomly pick a starting variable
 - Change = TRUE
 - WHILE Change
 - Change = FALSE
 - FOR each variable
 - * IF adding *Step Size* to current variable yields improved fitness
 - · Perform the addition
 - \cdot Change = TRUE
 - * ELSE IF subtracting *Step Size* from current variable yields improved fitness
 - \cdot Perform the subtraction
 - \cdot Change = TRUE
 - (b) Step Size = Step Size / 2

Sequential niching(SN)

Simple GA, Maintaining the best solution of each run offline Call multiple runs that sequential niching performs to solve a single problem-sequence

Niche radius : to avoid converging to the same area of the search space multiple times

- depress the fitness landscape at all points in radius of solution

- similar with threshold in sharing method

Parallel vs Sequential

- Advantage of SN
- -simplicity
- -ability to work with smaller population
- -speed
- Disadvantage of SN
- -Loss through deration of optimal
- solution/building blocks
- -Repeated search of depressed regions
- -Repeated convergence to the same solution

Test problems

M1-M9 : optimization problems MUX-6, PAR-8 : classification problems

M1~M4: one dimensional, five-peaked sinusoidal functions Equally-spaced peaks/not equally spaced peaks

Peaks with uniform height/not uniform height

Test problems: M5,M6

M5: two dimensional functions with four peaks of identical height M6: two dimensional functions with 25 peaks of differing heights

Figure 2: Test Function M5 is displayed.

Figure 3: Test Function M6 is displayed.

Test problems: M7, M8, M9

Massively multimodal, deceptive function Hardest test problems

Figure 4: Test Function $M\gamma$ is displayed.

Test problems: MUX-6,PAR-8

Classification problem

 $f(POS, NEG) = \begin{cases} 1 + POS & \text{if } NEG = 0 \\ 1 - \frac{NEG}{NTX} & \text{otherwise} \end{cases};$

MUX-6 : six bit multiplexer problem PAR-8: 8 bit parity problem

Easiest problem : MUX-6 Intermediate difficulty PAR-8

Result

Easiest problem : M1~M5, MUX-6 Intermediate difficulty : M6, PAR-8 Hardest problem : M7~M9,

Compare the number of GA function(except HC) Compare total number of function evaluations

Most of the case-HC has

best performance

(m1,2,5,mux-6)

For some case, DC has

best performance

(m3,4)

On easy problem, HC works well

Method	\bar{n}	\bar{g}	$GA: \mu$	Combo: μ		
	M1					
HС	2.72			1017		
SN	3.68	46.40	738	4112		
SH	5.76	8.00	264	2431		
DC	2.40	28.00	380	1246		
		M2				
HС	2.72			1021		
SN	4.64	75.60	1770	8632		
SH	8.96	8.70	442	3827		
DC	2.40	27.40	372	1264		
M3						
HС	3.04			1150		
SN	5.92	26.80	719	4375		
SH	6.08	8.70	294	2579		
DC	2.08	20.30	262	1013		
		M4				
HС	3.04			1140		
SN	5.12	72.40	2445	10231		
SH	6.72	9.20	352	2892		
DC	2.08	17.00	210	975		
M5						
HС	2.50			901		
SN	1.30	32.30	180	1456		
SH	2.80	8.00	103	1111		
DC	5.60	25.60	603	2459		
MUX-6						
HС	10.40			1257		
SN	6.40	140.70	4423	9439		
SH	13.60	8.90	534	1931		
DC	12.00	44.30	2816	3654		

SN performs poorly in most case -SN has squashed several peaks in the fitness landscape -once population grows large enough to locate one peak, it already locate multiple peaks

Method	\bar{n}	\bar{g}	$GA: \mu$	Combo: μ		
	M1					
HС	2.72			1017		
SN	3.68	46.40	738	4112		
SH	5.76	8.00	264	2431		
DC	2.40	28.00	380	1246		
		M2				
HС	2.72			1021		
SN	4.64	75.60	1770	8632		
SH	8.96	8.70	442	3827		
DC	2.40	27.40	372	1264		
M3						
HС	3.04			1150		
SN	5.92	26.80	719	4375		
SH	6.08	8.70	294	2579		
DC	2.08	20.30	262	1013		
		M4				
HС	3.04			1140		
SN	5.12	72.40	2445	10231		
SH	6.72	9.20	352	2892		
DC	2.08	17.00	210	975		
	M5					
HС	2.50			901		
SN	1.30	32.30	180	1456		
SH	2.80	8.00	103	1111		
DC	5.60	25.60	603	2459		
MUX-6						
НC	10.40			1257		
SN	6.40	140.70	4423	9439		
SH	13.60	8.90	534	1931		
DC	12.00	44.30	2816	3654		

Sharing has best performance on both case

DC is hard to find the optimal answer on M6 -DC uses non global optima as stepping-stone, dominated by other local optima Table 2: Performances are given on the two functions of intermediate difficulty.

Method	\bar{n}	\bar{g}	$GA:\mu$	Combo: μ		
M6						
HС	12.29			29,017		
SN	3.58	146.30	12,202	$46,\!657$		
SH	5.12	11.80	$1,\!638$	$12,\!910$		
DC			$> 1.5 \times 10^{6}$			
PAR-8						
HС	48.08			202,387		
SN	19.20	36.40	100,557	$263,\!666$		
SH	9.60	12.60	17,203	$54,\!402$		
DC	11.20	87.40	125,850	149,022		

DC only found answer on most case M8(scaling of M7), sharing has best performance -sharing is unable to solve unscaled, massively multimodal, deceptive problem

Table 3: Performances are given on the three functions of greatest difficulty. Function evaluations are i thousands (indicated by the letter K).

Method	\bar{n}	\bar{g}	$GA:\mu$	Combo: μ		
M7						
HС				> 2000 K		
SN			> 1500 K			
SH			> 1500 K			
DC	20.80	119.80	81 K	101K		
M8						
HС				> 2000 K		
SN			> 1500 K			
SH	19.20	19.20	13K	38K		
DC	22.40	134.40	98K	119K		
M9						
HС				> 2000 K		
SN			> 1500 K			
SH				> 2000 K		
DC	136.53	337.80	1253K	1342K		

Discussion

-HC is best form easiest problems, but hard to solve high difficulty problems -SN is weak on easy problems, and unable to solve harder problems. In most case HC works better because it does not destroy fitness landscape

-Sharing works on all levels of complexity, but doesn't work when has extraneous peaks that are similar in fitness to the desired peaks(use scaling)
-DC is generally good for all levels, but it can lose lower optima